Platinum Nanocatalyst Amplification: Redefining the Gold Standard for Lateral Flow Immunoassays with Ultrabroad Dynamic Range
نویسندگان
چکیده
Paper-based lateral flow immunoassays (LFIAs) are one of the most widely used point-of-care (PoC) devices; however, their application in early disease diagnostics is often limited due to insufficient sensitivity for the requisite sample sizes and the short time frames of PoC testing. To address this, we developed a serum-stable, nanoparticle catalyst-labeled LFIA with a sensitivity surpassing that of both current commercial and published sensitivities for paper-based detection of p24, one of the earliest and most conserved biomarkers of HIV. We report the synthesis and characterization of porous platinum core-shell nanocatalysts (PtNCs), which show high catalytic activity when exposed to complex human blood serum samples. We explored the application of antibody-functionalized PtNCs with strategically and orthogonally modified nanobodies with high affinity and specificity toward p24 and established the key larger nanoparticle size regimes needed for efficient amplification and performance in LFIA. Harnessing the catalytic amplification of PtNCs enabled naked-eye detection of p24 spiked into sera in the low femtomolar range (ca. 0.8 pg·mL-1) and the detection of acute-phase HIV in clinical human plasma samples in under 20 min. This provides a versatile absorbance-based and rapid LFIA with sensitivity capable of significantly reducing the HIV acute phase detection window. This diagnostic may be readily adapted for detection of other biomolecules as an ultrasensitive screening tool for infectious and noncommunicable diseases and can be capitalized upon in PoC settings for early disease detection.
منابع مشابه
Towards One-Step Quantitation of Prostate-Specific Antigen (PSA) in Microfluidic Devices: Feasibility of Optical Detection with Nanoparticle Labels
Rapid and quantitative prostate-specific antigen (PSA) biomarker detection would be beneficial to cancer diagnostics, improving early detection and therefore increasing chances of survival. Nanoparticle-based detection is routinely used in one-step nitrocellulose-based lateral flow (LF) immunoassays; however, it is well established within the scientific diagnostic community that LF technology l...
متن کاملIn situ amplified electronic signal for determination of low-abundance proteins coupling with nanocatalyst-based redox cycling.
Platinum-cerium oxide hybrid nanocatalysts (CeO(2)-Pt) were for the first time designed as bionanolabels for highly efficient electrochemical immunosensing of low-abundance proteins coupling nanocatalyst-based redox cycling with in situ signal amplification strategy.
متن کاملA nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels.
This communication reports a nanocatalyst-based electrochemical assay for proteins. Ultrasensitive detection has been achieved by signal amplification combined with noise reduction: the signal is amplified both by the catalytic reduction of p-nitrophenol to p-aminophenol by gold-nanocatalyst labels and by the chemical reduction of p-quinone imine to p-aminophenol by NaBH4; the noise is reduced ...
متن کاملPromotion of the Cupellation Method for Accurate Determination of Gold Alloy’s Karat Containing Platinum-Group Metals
The main standard method for gold karat determination is the cupellation method. However, this method is not sufficiently accurate to determine gold karat in the presence of insoluble Platinum–Group Metals (PGMs), such as Ir, Ru, and Rh. In this study, for the first time, a complementary method that can be used coupled with the reference cupellation method is presented for the high...
متن کاملAu(III)-promoted polyaniline gold nanospheres with electrocatalytic recycling of self-produced reactants for signal amplification.
A novel and redox-active nanocatalyst, Au(III)-promoted polyaniline gold nanosphere (GPANG), was designed as the nanolabel for highly efficient electrochemical immunoassay of human IgG by coupling with electrocatalytic recycling of self-produced reactants.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2018